Topic 2

Signal Processing Review

(Some slides are adapted from Bryan Pardo’s course slides on Machine Perception of Music)



Recording Sound

-
e

Mechanical Pressure Motion->Voltage Voltage over time
Vibration Waves Transducer
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Microphones

Ciaphragrm
Sound ==
Waves wip —_—
Audio Signal
Cross-Section of Dynamic Microphone
Wires carmnving
electrical
audin signal
4
Sound = Magnet
Waves =#
Caoil
Diaphragm

http://www.mediacollege.com/audio/microphones/how-microphones-work.html

ECE 477 - Computer Audition, Zhiyao Duan 2023



Pure Tone = Sine Wave
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x(t) = Asin(2nft + @)
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Reminders

Frequency, f = 1/T, is measured in cycles per second , a.k.a.
Hertz (Hz).

One cycle contains 2w radians.

Angular frequency Q, is measured in radians per second and is
related to frequency by QO = 2nf.

So we can rewrite the sine wave as

x(t) = Asin(Qt + @)
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Amplitude

Amplitude
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Fourier Transform
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We can also write

/\ /)

Amplitude

Amplitude

-\ \
1o 2 4 6\-/
Time (ms)
l X(Q) = j x(t)e 1 dt
1X(F)
—440 X 2m 0 440 X 2m

Angular Frequency (radians)
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Complex Tone = Sine Wave_{; )
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Frequency Domain

3.
2 |
jg?z N
- wTim;Q(ms)w .
(0.0
X(f) = x(t)e J2T gt
o | xo=] xo
S
=
I | |
S
<C
220 660 1100
Frequency (Hz)

ECE 477 - Computer Audition, Zhiyao Duan 2023



Harmonic Sound

e One or more sine waves

e Strong components are at integer multiples of a fundamental

frequency (FO) in the range of human hearing (20 Hz ~ 20,000
Hz)

e Examples
— 220 + 660 + 1100 is harmonic
— 220 + 375 + 770 is not harmonic
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Noise

e Lots of sines at random fregs. = NOISE

e Example: 100 sines with random frequencies between
100 and 10,000 Hz.
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How strong Is the signal?

e Instantaneous value?

e Average value?

e Something else?

x(t)
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e Acoustical

e Electrical

Acoustical or Electrical

Average 11 D 2
intensity [ = nC TDf X (t)dt
0
/7 N\
density :Eggg
11 o
Average _ 2
power P_RTD ; x“(t)dt
/
resistance
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sound pressure

View x(t) as
electric voltage
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Root-Mean-Square (RMS)

XRMS = |+ xz(t)dt
N
e Ty should be long enough.

e x(t) should have 0 mean, otherwise the DC component will be
integrated.

e For sinusoids

1 T
Xpms = Tf A?%sin?(2nft)dt = /A?/2 = 0.707A
\ 1o
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Sound Pressure Level (SPL)

o Softest audible sound intensity 0.000000000001 watt/m?
e Threshold of pain is around 10 watt/m?

e 13 orders of magnitude difference

e A log scale helps with this

e The decibel (dB) scale is a log scale, with respect to a
reference value
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The Decibel

e A |logarithmic measurement that expresses the

magnitude of a physical quantity (e.g., power or
intensity) relative to a specified reference level.

e Since it expresses a ratio of two quantities of the
same unit, it is dimensionless.

I
L —L.or=10log; (1—)
ref

X
—_ 2010g10 (x I;‘MS )
IF'el,RMS
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| ots of references!

dB-SPL — A measure of sound pressure level. 0dB-SPL is approximately the
quietest sound a human can hear, roughly the sound of a mosquito flying 3
meters away.

dbFS - relative to digital full-scale. 0 dbFS is the maximum allowable signal.
Values are typically negative.

dBV - relative to 1 Volt RMS. 0dBV = 1V.
dBu — relative to 0.775 Volts RMS with an unloaded, open circuit.

dBmV - relative to 1 millivolt across 75 Q. Widely used in cable television
networks.
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Typical Values

Jet engine at 3m

Pain threshold

Loud motorcycle, 5m
Vacuum cleaner
Quiet restaurant
Rustling leaves
Human breathing, 3m
Hearing threshold

140 C
130 ¢
110 C

80 C
50 C
20 C
10 C

0-SP
0-SP
0-SP
D-SP
D-SP
D-SP
n-SP

0c¢

0-SP
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Digital Sampling
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More quantization levels = more dynamic range
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Bit Depth

More bits = more quantization levels = better sound

Compact Disc: 16 bits = 65,536 levels
POTS (plain old telephone service): 8 bits = 256 levels

Signal-to-quantization-noise ratio (SQNR), if the signal is
uniformly distributed in the whole range
SQNR = 201log,, 2V ~ 6.02N dB

— E.g., V= 16 bits depth gives about 96dB SQNR.
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Amplitude
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AMPLITUDE

AONE ORN WD U O

Aliasing and Nyquist
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AMPLITUDE
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Aliasing and Nyquist

ample  TIME
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AMPLITUDE
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Nyquist-Shannon Sampling Theorem

e You can't reproduce the signal if your sample rate isn't
faster than twice the highest frequency in the signal.

e Nyquist rate: twice the frequency of the highest frequency in the
signal.
— A property of the continuous-time signal.

e Nyquist frequency: half of the sampling rate
— A property of the discrete-time system.

ECE 477 - Computer Audition, Zhiyao Duan 2023

26



Discrete-Time Fourier Transform (DTFT)
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° /\ The red dots form the
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Relation between FT and DTFT

[

Sampling: x[n] = x.(nT)

/\

Amplitude
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Time (ms)

FT: X.(Q) = [ x.(t)e /Hdt
DTFT: X(w) = X% _, x[n]e™/@n

X(w) -1 z X, (w 27Tk>

k=—o0

e Scaling: w = QT, i.e., w = 2w corresponds to
0= 27” = 2mnf,, which corresponds to f = f..

e Repetition: X(w) contains infinite copies of X,

spaced by

2TT.
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Aliasing

X (Q)] Complex tone
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Fourier Series

FT and DTFT do not require the signal to be periodic,
I.e., the signal may contain arbitrary frequencies, which
IS why the frequency domain is continuous.

Now, if the signal is periodic:
x(t+mT) =x(t) VmeZ

It can be reproduced by a series of sine and cosine
functions:

x(t) = Ay + Z |A,, cos(Q,t) + B, sin(Q,,t)]

n=1
In other words, the frequency domain is discrete.
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Discrete Fourier Transform (DFT)

e FT and DTFT are great, but the infinite integral
or summations are hard to deal with.

e In digital computers, everything is discrete,
including both the signal and its spectrum.

N-1
X[k] = ) x[n]e /2mkn/N
‘ n=0 ‘ Length of the
signal, i.e.
frequency time domain length of DFT
domain index index
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DFT and IDFT

N-1
DFT: X[k] = z x[n]e~J2mkn/N
n=0

1 N-1 .
IDFT: x|n] = ¥ 2 X[k]el?mkn/N
k=0

Both x[n] and X[k] are discrete and of length N.

Treats x[n] as if it were infinite and periodic.
Treats X[k] as if it were infinite and periodic.
Only one period is involved in calculation.
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Discrete Fourier Transform

e If the time-domain signal has no imaginary
part (like an audio signal) then the frequency-

dc/>31a|n sighal is conjugate symmetric around
N

Time domain x[n] Frequency domain X[k]
DC fs/2
| !
Real portion Real portion
0 N-1 DFT> 0 N/2 N-1
Imaginary portion <IDFT Imaginary portion
NN EEEE.
0 N-1 0 N/2 N-1
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Kinds of Fourier Transforms

Type of Transform

Example Signal

Fourier Transform
Signals: continuous, aperiodic
Spectrum: aperiodic, continuous

Fourier Series
Signals: continuous, periodic
Spectrum: aperiodic, discrete

Discrete Time Fourier Transform
Signals: discrete, aperiodic
Spectrum: periodic, continuous

r

\_

Discrete Fourier Transform
Signals: discrete, periodic
Spectrum: periodic, discrete
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continuous

discrete

Frequency domain

Duality

Time domain

continuous discrete
Fourier DTFT
Transform
Fourier DFT
Series
aperiodic periodic

Frequency domain
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periodic

Time domain
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The FFT

e Fast Fourier Transform
— A much, much faster way to do the DFT
— Introduced by Carl F. Gauss in 1805
— Rediscovered by J.W. Cooley and John Tukey in 1965
— The Cooley-Tukey algorithm is the one we use today (mostly)
— Big O notation for this is O(N /og N)
— Matlab functions fft and ifft are standard.
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Windowing

e A function that is zero-valued outside of some
chosen interval.

— When a signal (data) is multiplied by a window
function, the product is zero-valued outside the
interval: all that is left is the "view" through the

window.

x[n] w[n] ,z[nl

o ® 0o
- X maad— Lo -

> > >

Example: windowing x[n] with a rectangular window
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Some famous windows

e Rectangular ¢
wln] =1
| sample
e Triangular (Bartlett)
2 N—-1 N-1
win] = ( — ‘n - —
N-1 2 2

e Hann

2N

w|n] = 0.5 (1 — COS (N—

)

Note: we assume w[n] =0
outside some range [0, V]

sample

sample
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Why window shape matters

e Don't forget that a DFT assumes the signal in the window

is periodic

e The boundary conditions mess things up...unless you
manage to have a window whose length is exactly 1

period of your signal

e Making the edges of the window less prominent helps

suppress undesirable artifac

(S
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Fourier Transform of Windows

We want

- Narrow main lobe
- Low sidelobes

L = 41; % window length
fftlLen = 1024; % ffr length
w_rc = ones(L,1); % rectangular window

Wwf rc = 20*%1ogl0 (abs (fft(w_rc, fftlen))}:;

figure; h = axes ('Font5ize", 1&):;

% frequency indice=, make the positive and negative frequencies symmetric
fbhins = [(-(fftLen-1)/2 : -1}, (0 : EftLen/f2)] * 2*pi/fftlLen;

plot (h, fbins, [wf_rcifftLenf2+2:end]; wf_rc[l:fftLenf2+1]]];

grid on;

®Xlabel ("Normalized angular freguency'):

ylabel ("Amplitude (dE) ")

40+ :
_— Main lobe
) |
—~ 20 a Sidelobes
% /
:)’ 10 f\ﬂ A (
©
E 0 mnMMﬂ ﬂ WVMM(\MM
= ’
=
< .10
-20
-30

-4 -2 0 2 4
Normalized angular frequency
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Amplitude (dB)

Which window Is better?

Hann window

50
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o
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271n
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W I T i |

|

4
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Amplitude (dB)

Hamming window

(n] = 0.54 — 0.46 x 2mn
win| = uU. . COS N—]_
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o

I
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I
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-2 0 2
Normalized angular frequency
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Multiplication v.s. Convolution

Time domain Frequency Domain
[l yln S XTK] * VK]
x[n] * y[n] X|k]-Y[k]

« Windowing is multiplication in time domain, so the spectrum
will be a convolution between the signal’s spectrum and the
window’s spectrum

- Convolution in time domain takes 0(N?), but if we perform in

the frequency domain...
« FFT takes O(NlogN)
« Multiplication takes O(N)
« IFFT takes O(NlogN)
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Windowed Signal

f= = 10000; % sampling rate :
£f1 = 1000; % fisrt sinuscid 1000H=
£t2 = 1500; % second sinu=soid 1500H=

t = 0:1/f=3:3; % 3 seconds long
X1l = sin(2*pi*fl*tc); % first signal "

X2 = 2%z3in(2%*pi*f2¥*tL); second =signal

X = Kl+x2; mixture =signal N
fftLen = L*4; fft length

W = hamming (L) : window

WX = w'.*x(101:100+L) ; ¥ windowed =signal

%
%
L = 100; ¥ window length :
%
%

% magnitude spectrum of windowed signal

wxf = 20¥1ogl0({abs=s (fft (wx, fftLen))):

% show spectrum (only the positive frequencies)
figure; h = axes('FontSize', 1&);

plot{h, (D:fftlen/2)*fa/fftlen, wxf(l:fftlLen/2+1));
grid on;

Xlabel ('Frequency (Hz)'):

yvlabel ("Amplitude (dB) ') :
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Spectrum of Windowed Signal

e TWO

40

1
s

2 =0
il QA

_800 1000 2000 3000 4000 5000

Frequency (Hz)

sinusoids: 1000Hz + 1500Hz

&)

Amplitude (dB)
N
o
—
=

N
o

(o)}
o

e Sampling rate: 10KHz
e Window length: 100 (i.e. 100/10K = 0.015s)
e FFT length: 400 (i.e. 4 times zero padding)
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Zero Padding

e Add zeros after (or before) the signal to make it longer
o Perform DFT on the padded signal

3 T
2k
1k
o
1
2

3 e c c c c c c
o 200 400 600 800 1000 1200 1400 1600

| |
Windowed Padded zeros
signal
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Amplitude (dB)
R

1
B

Why Zero Padding?

e Zero padding in time domain gives the ideal
interpolation in the frequency domain.
o It doesn’t increase (the real) frequency resolution!

— 4 times is generally enough
— Here the resolution is always fs/L=100Hz

No zero padding 4 times zero padding 8 times zero padding
Y Y N
i SEin i
I FS TR PR AN - g 1T
1/ 1L T R Mt
il ) Ll
-800 1000 Fzrgggencysg—?g) 4000 5000 -800 1000 Fzrgggenc S?HO;)) 4000 5000 _800 1000 Fzrgggenc y383(z)) 4000 5000
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How to increase frequency resolution?

o Time-frequency resolution tradeoff

At -Af =1
(second) (Hz)

Window length: 10ms Window length: 20ms Window length: 40ms

|

N
o
D
o
a
o

N
o o
T
L

N
o

AT HLRT —_— o : mi
0 i L AR T
. ;‘z " ) |

] LRt | | |
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Short time Fourier Transform

0.1

L

o Ml =<5 i

2k B

0.1
short-time 23
window

DFT

40
3000

2000

freq /Hz

1000

| | |
2.4 245 25 2 55 26
time/s

eBreak signal into frames
o\Window each frame

eCalculate DFT of each windowed
frame

VA
)

M
W
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The Spectrogram

3 - gl 4
: _ NI, T r— 'L‘-" : L-.m_.n.w , ‘...
gt o — e --_‘_..-"\M g
" g L% ] J PPl
— 4000 : R NI R TR et =
M . ; L it
— G 530 L ; POt i e
> 3000 ey e e
E : : : O ST e
O b ! e - ! : i
5 I -MI 'ﬁw _'
QL | el 5
C 1000} e
: . o ] -

Time (second)

e There is a “spectrogram” function in matlab.
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5 kHz

4 kHz

3 kHz

2 kHz

1 kHz

5 kHz

4 kHz

3 kHz

2 kHz

1 kHz

A Fun Example

| ‘
| » h Il
| ! MU f <| ‘

| 3 ' Hh N l‘
| ' ! M 1 w‘l ‘
o % g

a i

"(" IHI“I Rl

g

[

il i "

500 ms 1000 ms 1500 ms 2000 ms 2500 ms

3000 ms

500 ms 1000 ms 1500 ms 2000 ms 2500 ms

(Thanks to Robert Remez)
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Overlap-Add Synthesis

e IDFT on each spectrum
— Use the complex, full spectrum
— Don't forget the phase (often using the original phase)
— If you do it right, the time signal you get is real

o (optional) Multiply with a synthesis window (e.g., Hamming) to
suppress signals at edges
— Not dividing the analysis window

e Overlap and add different frames together
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Constant Overlap Add (COLA)

e Windows of all frames add up to a constant function. Perfect
reconstruction!

w|n —mR] = const

- X\
Frame — T -
index Window rame
function hop size

e Requires special design of w and R
— Rectangular window: R < L <«<— Window size

— Triangular window: R = %,k >2,keN

— Hamming/Hann window: R = i,k €N
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Shepard Tones

amplitude

Barber’s pole

f 2f 4f 8f 16f 32f
partials (log frequency)

Continuous Risset scale

b
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Shepard Tones

o Make a sound composed of sine waves spaced at octave
intervals

e Control their amplitudes by imposing a Gaussian (or
something like it) envelope in the log-frequency
dimension

e Move all the sine waves up a musical half step
e Wrap around in frequency
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